
What's "Dana Script" ?

"Dana Script" is a programmable macro language for the text editor "Dana".
It is very similar to BASIC language in syntax. On the other hand, it has some
specifications like C language.
Most of control structures, numerous functions and properties to control
Dana, plus calling DLL functions capability, can help you to write flexible and
powerful macro scripts for Dana.

Language specification
Built-In functions
Properties
Appendix

Language specification

Symbol description
    <arg>                    parameter
    <var>                    variables
    <statement>        statement
    <declare>            declare statement
    <name>                  symbol name
    <expr>                  expression
    <const>                constant value
    <const string> constant string
    <type>                  type declaration
    [...]                    described between [] can be omitted.

Data Type
Operators
Declaration
Control structure
Calling procedures
Command Script and Resident Script
Additional information of language specification.

Data Type
   
The data types that Dana Script supports are Integer(4 byte binary), String
and their arrays.
It does not support the data types such as    'Single', 'Double', 'Variant', and
'Type'.
'Long' is not implemented because it means the same as Integer.
Integer ranges from -2,147,483,648 to 2,147,483,647.
String type has no limitation in size, but constant string in source code is
limited to 256 bytes.

Operators

Arithmetic operator
    + Plus or concatinate strings.
    - Minus
    / Division integer
    * Multiply integer
    Mod Remainder after Division.

Logical operator
    | Logical OR
    & Logical AND
    ^ Logical XOR

Relational operator
    Or
    And
    Xor

Comparing operator
    > Left is greater than right.
    >= Left is greater than or equal to right.
    = Left is equal to right.
    <= Left is less than or equal to right.
    < Left is less than right.
    <> Left is not right.

Single operator
    + Positive.
    - Negative.
    Not Non zero to zero and zero to non zero.

Bit operator
    << Shift to Left
    >> Shift to Right

Declaration

Declaration of variables and procedures are necessary in Dana Script.

Proc
Const
Dim, Static
Declare
Option

Proc
    Proc <name> (<arg>, <arg>, ...)
            <declare>
            <statement>
            [Return <expr>]
    End Proc

Proc statement declares an internal procedure. Prototype like C language is
not required. Declaration of an internal procedure is also an entry point of it.
And one 'Proc Main()' is necessary for a module.
(You can omit 'Proc' statement for 'Main' procedure)
A script always begins with the Main procedure regardless of actual location
in source code.

e.g.

    Proc foo(arg1, arg2)
            Return (arg1 + arg2)
    End Proc

Const
    Const <name> = <const>
    Const <name> = <const string>

Const statement declares a constant value. You can declare both Integer
type and String type in the same way.
Especially when the same constant string appears many times in your source
code, Const declaration saves a memory consumption.

    Const A = 1
    Const B$ = "ABC"
                    -> Actually, you don't have to add $ after symbol.

Dim, Static

    Dim <name> [As <type>]
    Static <name> [As <type>]

Declaration of variables is absolutely necessary in Dana Script.
When you declare variables using "Dim" inside of a procedure, they are
defined as "Local" variables (usable only inside of a procedure).
When you declare them outside of a procedure, they are defined as "Global"
variables. (It is usable in everywhere after the declaration in a source code.)
Variables are filled by zero initially.

When a type-description is omitted, it is assumed as the Integer type.

e.g.
    Dim A
    Dim B$
    Dim C(10)
    Dim D$(20,20)

When you want to declare array of variables, specify the size of array in ().
You can declare multi-dimensional array stating the size of array delimitering
by ','.
Index of array begins by 1 as default.

Static statement is pretty much the same as Dim if it is used outside of the
procedure.
It is different when used inside of the procedure however. Static variables
keep their values even after exitting the procedure.

e.g.
    'Each time "foo" is called, 'S' increments by 1.
    '"A" is initialized to zero each time at the entry of this procedure ,
    'so the result of "A" should be always 1.
    Proc foo()
            Static S
            Dim A
            S = S + 1
            A = A + 1
            MsgBox("S is " + Str$(S))
            MsgBox("A is " + Str$(A))
    End Proc

Declare
    Declare Proc <name> Lib "lib" [Alias "alias"] (<arg>,<arg>,[..]) [As
<type>]

"Declare" statement is used for declaring a procedure in DLL. Dana Script
supports only 32 bit DLL including, of course, Win32 API.

"lib" is the file name of DLL. ".DLL" extention can be omitted.
"alias" is the actual procedure name in DLL. If <name> is the same name as
actual DLL exported name and it doesn't have any problem(for example
exported name conflicts Dana Script's reserved word), it can be omitted.
When you describe ".." at the end of parameter list, it allows "variable"
parameters. This enables you to call C type declared function that has
variable parameters such as "wsprintf".

e.g.
    Declare Proc wsprintf Lib "User32" Alias "wsprintfA" (szArea$, szFmt$, ..)

In Dana Script, not like ordinary BASIC, a parameter is passed "By Value". If
you want to pass an address of a variable, see Tips.

e.g.
    ' Windows API call sample
    ' Menu prompts you to select whether "Iconic" or "Maximize".
    ' If you select "Iconic" then Window will be minimized,
    ' Otherwise Window will be maximized.
    Const SW_SHOWMINIMIZED = 2
    Const SW_SHOWMAXIMIZED = 3

    Declare Proc ShowWindow Lib "User32" (hWnd%, nShowCmd%)

    Main ()
            Dim hMenu
            hMenu = NewMenu()
            AddMenuItem(hMenu, "&Iconic",      SW_SHOWMINIMIZED)
            AddMenuItem(hMenu, "&Maximize", SW_SHOWMAXIMIZED)
            ' hMainWnd property is Dana's main window handle.
            ShowWindow(hMainWnd, DoMenu())
            DiscardMenu(hMenu)
    End

Option

"Option" statement is to control Dana Script compiler. Following two options
are supported.

        Option Base <const>
Set array index base. it normally should be 0 or 1.
Default value is 1.

        Option Stack <const>
Set stack size. Usually you don't have to specify this value.
Default value is 8192 bytes(2048 level).

Control structure

Dana Script supports most of control structures those are supported by some
other structured programming language.(C, PASCAL etc.)
If
Do .. Loop
Select Case
While .. Wend
For .. Next
Return
Exit

If
If Statement

    If <expr1> Then
            <statement1>
    [Else If <expr2> Then
            <statement2>]
    [Else
            <statement3>]
    End If

When expr1 is True then execute statement1.
If expr1 is not True and expr2 is True then execute statement2.
Otherwise execute statement3.

Sometimes a expression is too long and you might want to devide it by
entering return like this....
    If ..
    Then
            ..
    Else
    If ..
But be patient. "If .. Then" or "Else If .. Then" must be written in one line.

    If <expr> Then <statement>

In this case, you can't use "Else" or "End If" statement.

Do .. Loop
    Do While|Until <expr>
            <statement>
    Loop

This statement repeats executing <statement> while <expr> is True(Do
While) or False(Do Until).

    Do
            <statement>
    Loop While|Until <expr>

This statement repeats executing <statement> while <expr> is True(Loop
While) or False(Loop Until).
<statement> is executed at least one time.

Select Case
    Select Case <expr0>
    Case <expr1>
            <statement1>
    [Case <expr2>
            <statement2>]
    [Case Else
            <statement3>]
    End Select

When <expr1> is matched to <expr0> do <statement1>, and when
<expr2> is matched to <expr0> do <statement2> otherwise do
<statement3>.

While .. Wend
    While <expr>
            <statement>
    Wend

It is pretty much the same as "Do While .. Loop".

For .. Next
    For <var> = <expr1> To <expr2> [Step <const>]
            <statement>
    Next [<var>]

"For" statement repeats <statement> incrementing <var> by 1(or specified
value by "Step") while <var> is growing from <expr1> to <expr2>.
Be sure that it not to be an endless loop.

Return

"Return" statement is to be used when you want to exit the procedure.
If you want to return a value, use Return statement with an expression.

e.g.
    Return True  'True is as the return value.

Exit

"Exit" statement is used when you want to exit a current loop block or a
procedure.
You can write it like "Exit Do", "Exit For", but it just make the readability of
your source code better. No actual influence.

e.g.
    For I = 1 To 10
            J = I
            Do While True
                    J = J - 1
                    If J < 0 Then Exit          ' Absolutely exit to 1>.
            Loop  ' Even if you write it "Exit For",
1>  ' never exit to 2>.
    Next I
2>

Calling procedures

There are 3 types of procedure in Dana Script:
User defined procedure, built in procedure and DLL procedure.

Whatever the procedure type is, you can call it in following 3 ways.

    1) rc = Foo(Arg)
    2) Call Foo(Arg)
    3) Foo(Arg)

1 is the function calling. You can get a return value by calling function in this
way. And you can use the return value as an argument of the other function
like this.

e.g.
        If Baa(Foo(Arg)) = True Then ...

2 and 3 are the procedure calling. There is no actual difference between
them. Use whichever you prefer. If procedure has a return value, it is just
ignored.

BASIC-LIKE built-in statement is not supported in Dana Script. Some
alternative functions are available instead.

e.g.
          Ordinary BASIC statement: Open "file" For Input As #1
          Dana Script:                      fp = FOpen("file", "r")

*Additional notes about Built-In functions

In particular cases, you can omit certain parameters. See the explanation of
each functions to check how it works when you omit the parameters.

*Additional notes about DLL calling.

For general information, see the explanation of Declare statement.
Followings are some additional information.

1) If you want to pass an address of the return area, you can pass String
variable.
      You must have allocated enough space for this string before the call.

e.g.

          Dim str1$
          str1$ = Space(22)
          DLLProc(str1$, 20)        'DLLProc returns string to str1$

2) "" doesn't mean NULL. If you want to pass NULL, pass zero.

Command Script and Resident Script

Dana Script supports two forms of executable.
One is the Command Script. It works like parmanent editting command of
Dana.
The other is the Resident Script. It stays on memory and responds to certain
events posted by Dana.
Actually, there is no essential difference. Only the way of implementation is
different.

Command Script
Resident Script

Command Script

The implementation of Command Script is very simple.
"Main" procedure entry is the start of the script, and the corresponding "End"
is the end of the script. There is no other rule.

Resident Script
   
 The entry point of Resident Script is the "Main" procedure like Command
Script. But Resident Script should always check ".DanaState" property and
dispatch to a procedure suitable for the current event.
If you are familiar with the Windows SDK programming, it may be quite easy
to understand. Usually you can use TsrTmpl.DAS as a template.

As default, Dana.DAS is loaded as a Resident Script when you start Dana.
Adding code on it, you can customize the default actions of Dana.

    ".DanaState" can be one of following values.
    Practically, you should declare in your source code as follows.

Const STATE_INIT = 0          'Normally executed
Const STATE_BEFORE_OPEN = 1          'Before open file.
Const STATE_AFTER_OPEN = 2          'After open file.
Const STATE_AFTER_NEW = 3          'After new file.
Const STATE_BEFORE_SAVE = 4          'Before save current file.
Const STATE_AFTER_SAVE = 5          'After save current file.
Const STATE_BEFORE_CLOSE= 6          'Before close current window.
Const STATE_BEFORE_EXIT = 7          'Before exitting editor.
Const STATE_KEY_PRESS = 8          'Certain key was pressed except
character key.
Const STATE_CHAR = 9          'Certain character is inputted.
Const STATE_ENTER = 10        'Enter key is pressed.
Const STATE_TIMER = 11        'Per second.
Const STATE_ACTIVATE = 12        'Current window is activated.

When you receive STATE_INIT, you should call "StayResident" procedure to
stay on the memory. And at a certain timing you like, you can call
"Terminate" procedure to release this.

Parameters are set in ".ParmA", ".ParmB", ".ParmStrA", "ParmStrB"
properties.
Its meaning depends on the value of ".DanaState".

STATE_INIT

STATE_BEFORE_OPEN
        .ParmStrA = File name to open.
        Return:
                .ParmA <- 0 I don't wanna open this file.

STATE_AFTER_OPEN

STATE_AFTER_NEW

STATE_BEFORE_SAVE
        .ParmStrA = File name to save.
        Return:
                .ParmA <- 0 I don't wanna save this file.

STATE_AFTER_SAVE

STATE_BEFORE_CLOSE

STATE_BEFORE_EXIT

STATE_KEY_PRESS
        .ParmA = Virtual key code.
        .ParmB = Shift status.
                    Virtual key code is compatible with Windows' virtual key code.

For more information, see appendix Virtual key codes
Shift status represents a combination of Ctrl, Shift, and Alt keys.
Just as follows.

                        Ctrl                &H20
                        Shift              &H40
                        Shift+Ctrl    &H60
                        Alt                  &HFE
                        Shift+Alt      &HFD
        Return:
                .ParmA <- 0 I don't want this key affects Dana.

STATE_CHAR
        .ParmA = Ascii character code
        Return:
                .ParmA <- 0 I don't want to input this character.

STATE_ENTER
        Return:
                .ParmA <- 0 I don't want to input return.

STATE_TIMER

STATE_ACTIVATE

Additional information of language specification.
   
* Error trapping is not supported.
    You should check return values if the procedure returns error information.
* Delimiter of multi statement is ";"(semicolon).
* If parameter is Integer, value is passed. If String, pointer is passed.
* Internal string specification is ASCIIZ (terminated by zero).
* GoTo statement is not supported. <g>

Built-In functions

Conversion
String manipulation
Input and Output
Dana Command - General
Dana Command - Edit
Dana Command - File
Dana Command - Find
Dana Command - Jump
Dana Command - Exec
Edit
System
Execute
Special
Others

Conversion
Abs
Asc
Chr
Hex
Str
Val
RGB

Abs
Abs(nVal%) As Integer

Parameters:
        nVal%      Value to be converted to absolute value.
Return:
        Converted value
Description:
Converts a specified value to an absolute value.

Asc
Asc(sStr$) As Integer

Parameters:
        sStr$      String.
Return:
        Character code for the first character in a string.

Description:
Returns a character code (Integer) for the first character in passed string.

Chr
Chr(nVal%) As String

Parameters:
        nVal%      Character code
Return:
        One character string whose ASCII code is the argument.

Description:
Converts a character code to a character string.
It is useful to represent non-printable characters or some special characters
like "(double quote).

Example:
        Chr(&H22) + "Test" + Chr(&H22) + Chr(&H0A)    --> "Test"<LF>

Hex
Hex(nVal%) As String

Parameters:
        nVal%      Integer value
Return:
        Hex string

Description:
Converts a Integer value to a string which represents hexadecimal.

Str
Str(nVal%) As String

Parameters:
        nVal%      Integer value
Return:
        Decimal string.

Description:
Converts a Integer to a string which represents decimal value.

Val
Val(sStr$) As Integer

Parameters:
        sStr$      A string represents decimal value.
Return:
        Decimal value which is represented by the string parameter.
        If conversion is failed, it returns zero.
Description:
Converts a string, which represents decimal value, to numeric decimal. If you
want to pass hexadecimal string, put "&H" prefix at the top of a string.

JisToSjis
JisToSjis(nJis%) As Integer

Parameters:
Return:
Description:

SjisToJis
SjisToJis(nSjis%) As Integer

Parameters:
Return:
Description:

RGB
RGB(nRval%, nGval%, nBval%) As Integer

Parameters:
        nRval%    Red value(0 - 255)
        nGval%    Green value(0 - 255)
        nBval%    Blue value(0 - 255)
Return:
        Long value which represents color.

Description:
Returns color expression made from R,G,B information.

String manipulation
InStr
Len
Left
Right
Mid
LTrim
RTrim
Trim
Space
LCase
UCase

InStr
InStr(sTarg$, sFind$) As Integer

Parameters:
        sTarg$    String expression to be searched.
        sFind$    String expression to be sought.
Return:
        The position at which sFind$ is found within sTarg$.
        If not found, returns zero.

Description:
Returns the position one string is found within another string.

Len
Len(sStr$) As Integer

Parameters:
        sStr$      String.
Return:
        Length of sStr$

Description:
Returns the length of a string.

Left
Left(sStr$, nLen%) As String

Parameters:
        sStr$      String.
        nLen%      Length of return characters.
Return:
        Leftmost string.
Description:
Returns the leftmost nLen% characters of a string argument.

Right
Right(sStr$, nLen%) As String

Parameters:
        sStr$      String.
        nLen%      Length of return characters.
Return:
        Rightmost string.

Description:
Returns the rightmost nLen% characters of a string argument.

Mid
Mid(sStr$, nBeg%, nLen%) As String

Parameters:
        sStr$      String.
        nBeg%      Beginning position.
        nLen%      Extracting length.
Return:
        Extracted string.

Description:
Returns a string extracted from a string parameter. The extracting position is
indicated by nBeg% and the length is indicated by nLen%.

LTrim
LTrim(sStr$) As String

Parameters:
        sStr$      String
Return:
        Trimmed string

Description:
Eliminates tabs or whitespaces from left side of a string.

RTrim
RTrim(sStr$) As String

Parameters:
        sStr$      String.
Return:
        Trimmed string.

Description:
Eliminates tabs or whitespaces from right side of a string.

Trim
Trim(sStr$) As String

Parameters:
        sStr$      String.
Return:
        Trimmed string.

Description:
Eliminates tabs or whitespaces from both sides of a string.

Space
Space(nLen%) As String

Parameters:
        nLen%      Numbers of spaces you want.
Return:
        A string of whitespaces.

Description:
Returns a string which contains whitespaces with the specified length.
This function is also useful to allocate dummy area for string variable.

LCase
LCase(sStr$) As String

Parameters:
        sStr$      String to convert.
Return:
        Converted string.

Description:
Returns a string whose characters are converted to lower case.

UCase
UCase(sStr$) As String

Parameters:
        sStr$      String to convert.
Return:
        Converted string.

Description:
Returns a string whose characters are converted to upper case.

Input and Output
Eof
FOpen
FGetInt
FGets
FPutInt
FPuts
FSeek
FClose
FCopy
FKill
Dir

Eof
Eof(nFp%) As Integer

Parameters:
        nFp%        File pointer.
Return:
        True        Already reached to EOF
        False      Not reached to EOF yet.

Description:
Checks if the file pointer has already reached to the end of the file.

FOpen
FOpen(sFile$, sFlg$) As Integer

Parameters:
        sFile$    File name to open.
        sFlg$      File open mode. it can be "r"(Read), "w"(Write) or

        "rw"(Read Write (as default)).
Return:
        Non 0      File pointer.
        0              Failed to open.

Description:
Opens a specified file with a specified opening mode.
File pointer which is returned can be used for calling another file handling
function. When you don't want to use the file pointer any more, you have to
close it by calling FClose function.

FGetInt
FGetInt(nFp%, nBytes%) As Integer

Parameters:
        nFp%        File pointer.
        nBytes% Bytes to read.(1 to 4)
Return:
        Numeric value read from file.

Description:
Returns a numeric value read from a file by specified bytes. Number of bytes
which you can specify should be up to 4(bytes of integer).
This function is useful for binary file handling.

FGets
FGets(nFp%) As String

Parameters:
        nFp%        File pointer.
Return:
        A string read.
        ""    means EOF

Description:
Returns a string read from a file. End of line is converted to LF even if it is
CRLF. If you don't need LF code, truncate it using Left() function.

Example:
        str1$ = FGets(nFp)
        MsgBox(Left(str1$, Len(str1$)-1))

FPutInt
FPutInt(nFp%, nBytes%, nVal%) As Integer

Parameters:
        nFp%        File pointer.
        nBytes% Bytes to write.(1 to 4)
        nVal%      Value to write.
Return:
        True        Succeeded to write.
        False      Failed to write.

Description:
Writes numeric value by specified bytes. If the value isn't representable in
specified bytes, over bytes is truncated.
This function is useful for binary file handling.

FPuts
FPuts(nFp%, sStr$) As Integer

Parameters:
        nFp%        File pointer.
        sStr$      String.
Return:
        True        Succeeded to write.
        False      Failed to write.

Description:
Writes string to file. If you want a carriage return code, add LF code at the
end of the string. Do not add CR code.

Example:
        FPuts(nFp%, "Test" + Chr(10))                      'LF(Chr(10)) can be converted
  'CRLF code finely.
        FPuts(nFp%, "Test" + Chr(13) + Chr(10)) 'Another CR code(Chr(13))
  'is added. Not good.

FSeek
FSeek(nFp%, nLen%, nMode%) As Integer

Parameters:
        nFp%        File pointer
        nLen%      Number of bytes to move
        nMode%    Seek mode
                        0      From top of file.
                        1      From bottom of file.
                        2      From current position of file pointer.
Return:
        Absolute position of file pointer after moved.

Description:
Moves position of the file pointer to specified position in the file.

FClose
FClose(nFp%)

Parameters:
        nFp%        File pointer
Return:
        None

Description:
Closes the file. You have to close a file opened by FOpen().

FCopy
FCopy(sSrc$, sTarg$) As Integer

Parameters:
        sSrc$      File name to copy.
        sTarg$    File name to be copied.
Return:
        True        Copied successfully.
        False      Failed to copy.

Description:
Copies specified file to another.

FKill
FKill(sFile$) As Integer

Parameters:
        sFile$    File name to delete
Return:
        True        Deleted successfully.
        False      Couldn't be deleted.

Description:
Deletes specified file.

Dir
Dir(sMask$) As String

Parameters:
        sMask$    File name or file pattern.
Return:
        File name that was found.
        "" means specified file was not found.

Description:
Returns the file name that matches to the specified file pattern. It never
returns directory name.

Dana Command - General
Command
KeyToCmd

Command
Command(sCmd$)

Parameters:
        sCmd$      Command name of Dana.(Case sensitive)
Return:
      None

Description:
Calls permanent command of Dana. For information about the command
names, see the appendix "Commands of Dana

KeyToCmd
KeyToCmd(nKey%, nSft%) As String

Parameters:
        nKey%      Virtual key code.
        nSft%      Shift status.
Return:
        Command name

Description:
Retrieves command name from a particular key bind(virtual key code and
shift status).
Virtual key code is compatible with Windows' virtual key code.
For more information, see appendix Virtual key codes
Shift status represents a combination of Ctrl, Shift, and Alt keys, as shown
below.

        Ctrl                &H20
        Shift              &H40
        Shift+Ctrl    &H60
        Alt                  &HFE
        Shift+Alt      &HFD

Dana Command - Edit
AddString
Convert
Sort
CopyToFile
PasteFromFile
AppendFile

AddString
AddString(sAdd$, nPos%)

Parameters:
        sAdd$      String to add.
        nPos%      Position at which you are adding.
                        0      Top of string.
                        1      End of string.
Return:
        None

Description:
Adds specified string at the specified position of each selected string.

Convert
Convert(nCase%, nTab%, nDBCS%)

Parameters:
        nCase%    Case conversion mode.
                        0      No conversion.
                        1      ALL TO UPPER.
                        2      all to lower.
                        3      Top of line to upper.
                        4      Top Of Word To Upper.
        nTab%      Tab conversion mode.
                        0      No conversion.
                        1      Tab to Space.
                        2      Space to Tab.
Return:
        None

Description:
Converts selected string with specified conversion mode.

Sort
Sort(nOrder%, nBlkKey%)

Parameters:
        nOrder% Sort order
                        0      Ascendantly(as default).
                        1      Descendantly.
        nBlkKey% Box sort mode
                        0      Sort only inside of the box(as default).
                        1      Sort entire lines treating the box selection as sort keys.
Return:
        None

Description:
Sorts selected strings.

CopyToFile
CopyToFile(sFile$) As Integer

Parameters:
        sFile$    File name to save.
Return:
        Always True (in this version)

Description:
Writes selected strings to a specified file.

PasteFromFile
PasteFromFile(sFile$) As Integer

Parameters:
        sFile$    File name to read
Return:
        Always True (in this version)

Description:
Reads a specified file at the caret position.

AppendFile
AppendFile(sFile$) As Integer

Parameters:
        sFile$    File name
Return:
        Always True (in this version)

Description:
Appends selected strings at the end of a specified file.

Dana Command - File
FileOpen
SaveAs

FileOpen
FileOpen(sFile$, nROnly%) As Integer

Parameters:
        sFile$    File name to open.
        nROnly% Read only flag.
                        0      Not read only (as default)
                        1      Open as read only file.
Return:
        Always True (in this version)

Description:
Opens a specified file to edit.

SaveAs
SaveAs(sFile$) As Integer

Parameters:
        sFile$    File name to save
Return:
        Always True (in this version)

Description:
Saves the current work file as a specified file name.

Dana Command - Find
FindFor
FindBack
Replace
Grep

FindFor
FindFor(sFind$, sOpt$) As Integer

Parameters:
        sFind$    String to find.
        sOpt$      Option string (contains following characters.)
                        G      Search from the top of text.
                        A      Search in all windows currently opened.
                        M      Mark found line.
                        I      Ignore case
                        W      Match whole word.
                        T      Match top of string only.
                        E      Match end of string only.
                        R      Use regular expression.
                        If not specified anything, default find option is used.
Return:
        True        Found.
        False      Not found.

Description:
Searches specified string forward.

FindBack
FindBack(sFind$, sOpt$) As Integer

Parameters:
Return:
        see FindFor

Description:
Searches specified string backward.

Replace
Replace(sFind$, sRepl$, sOpt$) As Integer

Parameters:
        sFind$    String to find.
        sRepl$    String to replace.
        sOpt$      Option string (contains following characters.)
                        G      Search from top of text.
                        A      Search in all windows currently opened.
                        M      Mark replaced line.
                        I      Ignore case.
                        W      Match whole word.
                        T      Match top of string only.
                        E      Match end of string only.
                        R      Use regular expression for finding.
                        N      Replace all without confirming.
                        If not specified, default replace option is used.
Return:
        True        Found string to replace at least one.
        False      Not found any string to replace.

Description:
Replaces specified string with another one. This function returns True as long
as one string has been found to replace, even if you canceled replacing.

Grep
Grep(sFind$, sDir$, sMask$, sOpt$) As Integer

Parameters:
        sFind$    String to Find
        sDir$      Directory to search.
        sMask$    Target file pattern.
        sOpt$      Option string (contains following characters.)
                        I      Ignore case.
                        W      Match whole word.
                        T      Match top of string only.
                        E      Match end of string only.
                        R      Use regular expression for finding.
                        U      Search sub directories recursively.
                        P      Output file name as full path.
                        If not specified, default Grep option is used.
Return:
        Always returns True.

Description:
Searches a specified string in files on your disk, and when found, outputs the
result strings formatted with tag style to the Output Screen of Dana.
Tag style is like as follows.

FILENAME.TXT(1):
FILENAME.TXT(5):
FILENAME.TXT(20):
FILENAME.TXT(23):

Dana Command - Jump
JumpLine

JumpLine
JumpLine(nLineNo%, nMode%)

Parameters:
        nLineNo%        Line number.
        nMode%            Line number count mode.
                                0      As logical(count of return code)(as default)
                                1      As shown (including folded line without return code)
Return:
        None

Description:
Goes to a certain line whose line number is specified.

Dana Command - Exec
ShellCmd
ShellMenu

ShellCmd
ShellCmd(sCmd$, sOpt$) As Integer

Parameters:
        sCmd$      Command line.
                        It can include following macro symbols.
                        %F            File name of current file.
                        %N            File name without extention.
                        %P            Full path name of the current file.
                        %D            Directory name of the current file.
                        %E{Env} String indicated by environment string in {}
                        %T            Name of a temporary file to which selected string is
saved.
                        %I            Prompt user to input a string here.
                        %%            '%' itself.
        sOpt$      Option string(contains following characters)
                        I      Run minimized.
                        O      Get console output to the Output Screen.
                        E      Get console output to the caret position.
                        C      Run via command shell.
Return:
        Always True (in this version)

Description:
Runs the other application.

ShellMenu
ShellMenu(nCmd%) As Integer

Parameters:
        nCmd%      Program number in the Louncher(0 to 25)
Return:
        Always True (in this version)

Description:
Runs the other application registered in the Launcher of Dana.

Edit
GetCurrentLine
GetNext
GetNextMark
GetPrev
GetPrevMark
GetThisLine
GetTopLine
LoadThisLine
SaveThisLine
GetCount
GetToThisCount
GetCurrentChar
GetCursorWord
GetSelected
DelSelect
SelectCancel
IsMarked
SetMark
IsModified
SetModified
InputChar
InsertString
SetCursorPos
GotoThere

GetCurrentLine
GetCurrentLine() As Integer

Parameters:
        None
Return:
        Line Handle.

Description:
Retrieves a line handle of the current line. Lline handle is a unique value that
represents a certain line, and is used for the other line-handling functions.

GetNext
GetNext(hLine%) As Integer

Parameters:
        hLine%    Line handle.
Return:
        Next line handle.

Description:
Returns the line handle of the line next to the specified line.

GetNextMark
GetNextMark(hLine%) As Integer

Parameters:
        hLine%    Line handle.
Return:
        Next marked line handle.

Description:
Returns the line handle of the next marked line to the specified line.

GetPrev
GetPrev(hLine%) As Integer

Parameters:
        hLine%    Line handle.
Return:
        Previous line handle.

Description:
Returns the line handle of the line previous to the specified line.

GetPrevMark
GetPrevMark(hLine%) As Integer

Parameters:
        hLine%    Line handle.
Return:
        Previous marked line handle.

Description:
Returns the line handle of the marked line previous to the specified line.

GetThisLine
GetThisLine(nLineNo%) As Integer

Parameters:
        nLineNo Line number.
Return:
        Line handle.

Description:
Retrieves the line handle of the line specified by the line number.   

GetTopLine
GetTopLine() As Integer

Parameters:
        None
Return:
        Line handle.

Description:
Retrieves the line handle of the top line of the text.

LoadThisLine
LoadThisLine(hLine%) As String

Parameters:
        hLine%    Line handle
Return:
        String.

Description:
Retrieves the actual string represented by the line handle.

SaveThisLine
SaveThisLine(hLine%, sStr$) As Integer

Parameters:
        hLine%    Line handle.
        sStr$      String to restore.
Return:
        Updated line handle.

Description:
Replaces the string represented by the line handle with specified string.
The passed line handle is not proper after call this function, so use returned
new line handle as line handle for that line.
Note that this function clears undo/redo buffers.

GetCount
GetCount(hLine%) As Integer

Parameters:
        hLine%    Line handle
                        0 means current line(as default)
Return:
        Count of turned line.

Description:
Returns the count of turned (continued from the right side of the window to
the left side without carriage return.) lines in the current logical line.
For instance, if not turned, it returns 1. If turned once, it returns 2.

GetToThisCount
GetToThisCount() As Integer

Parameters:
        None
Return:
        Position from logical top of line.

Description:
Returns the count from the logical top of the current line to the caret
position.
For instance, if the logical top of the line and the caret position is matched, it
returns 0.

GetCurrentChar
GetCurrentChar() As Integer

Parameters:
        None
Return:
        Character code.

Description:
Returns an ASCII character code on the caret position.

GetCursorWord
GetcaretWord() As String

Parameters:
        None
Return:
        A word on caret.

Description:
Returns a delimitered word on the caret position.

GetSelected
GetSelected() As String

Parameters:
        None
Return:
        A string copied selected region.

Description:
Returns the selection as a string. Return code is converted to CRLF.
If the selection mode is box, each end of line is converted to CR and end of
block is CRLF.

DelSelect
DelSelect()

Parameters:
        None
Return:
        None

Description:
Deletes the text which is currently selected .

SelectCancel
SelectCancel()

Parameters:
    None
Return:
    None
Remarks:
Cancels the selection of the current window.

IsMarked
IsMarked(hLine%) As Integer

Parameters:
        hLine%    Line handle
                        0 means current line (as default).
Return:
        True        Marked.
        False      Not marked.

Description:
Checks if a specified line is marked or not.

SetMark
SetMark(bMark%, hLine%)

Parameters:
        bMark%    True        Mark.
                        False      Don't mark.
        hLine%    Line handle
                        0 means current line(as default).
Return:
        None

Description:
Marks a specified line.

IsModified
IsModified() As Integer

Parameters:
        None
Return:
        True        Already edited.
        False      It is not edited yet.

Description:
Checks if the current file is modified or not.

SetModified
SetModified(bModify%)

Parameters:
        bModify%        True        Set editted flag.
                                False      Clear editted flag.
Return:
        None

Description:
Sets/Resets the modified flag of the current file.

InputChar
InputChar(nChar%)

Parameters:
        nChar%    ASCII character code.
Return:
        None

Description:
Inputs a character represented by an ASCII character code to the caret
position.

InsertString
InsertString(sStr$)

Parameters:
        sStr$      String to insert.
Return:
        None

Description:
Inputs a string to the caret position.

SetCursorPos
SetcaretPos(nCsrX%, nCsrY%)

Parameters:
        nCsrX      X position.
        nCsrY      Y position.
Return:
        None

Description:
Moves caret to the specified XY position.

GotoThere
GotoThere(nLineNo%, nColm%)

Parameters:
        nLineNo%        Line number as shown (0 means don't move line).
        nColm%            Column position (0 means don't move column).
Return:
        Nothing.

Description:
Moves caret to the specified position in the current text.

System
NewMenu
AddMenuItem
DoMenu
GetMenuItem
DiscardMenu
MsgBox
InputBox
GetOpenFile
Beep
DoEvents
Environ
AppActivate
SendKeys
ShowCursor
Time
Date
Wait

NewMenu
NewMenu() As Integer

Parameters:
        None
Return:
        Menu handle.

Description:
Creates an empty menu. You must call DiscardMenu to release the handle
after used.

AddMenuItem
AddMenuItem(hMenu%, sItem$, nID%) As Integer

Parameters:
        hMenu%    Menu handle
        sItem$    Menu item string.
        nID%        Menu ID (as you like).
                        But following two is reserved.
                        0              Cascaded Menu.
                        65535      Separater.
Return:
        True        Successfully added.
        (or sub menu handle, when you specified nID% as 0)
        False      Failed to add.

Description:
Adds a menu item to the menu.
You can create cascaded menu specifying nID% as 0. In this case, the
returned value is a handle of a new menu which you can use to add a sub
menu item.
nID% must be a unique value in one menu including sub menu, except 0 and
65535.

DoMenu
DoMenu(hMenu%) As Integer

Parameters:
        hMenu%    Menu handle
Return:
        Menu item ID that was selected.
        65535 means cancelled.

Description:
Executes the menu and returns the item ID that identifies each menu item.

GetMenuItem
GetMenuItem(hMenu%, nID%) As String

Parameters:
        hMenu%    Menu handle
        nID%        Item ID.
Return:
        Menu item string.

Description:
Returns the menu item string that is identified by the item ID.

DiscardMenu
DiscardMenu(hMenu%)

Parameters:
        hMenu%    Menu handle.
Return:
        None

Description:
You have to call this function to release the menu handle that will not be
used any more.

MsgBox
MsgBox(sMsg$, sTitle$, nStyle%) As Integer

Parameters:
        sMsg$      Message string.
        sTitle$ Title string of message box (omittable)
        nStyle% Style of message box(omittable)

        (Compatible with MessageBox;Windows API function.)

Return:
        (Compatible with MessageBox;Windows API function)

Description:
Opens a message box dialog. Some constant values (like
"MB_YESNO","IDOK" and so on) are not defined in Dana Script permanently,
so you should define these constants using "Const" statement (or use
constant numeric as a parameter directly).
For more information, see appendix Other Constants

InputBox
InputBox(sMsg$, sTitle$, sDefault$) As String

Parameters:
        sMsg$              Message string.
        sTitle$          Title string (omittable).
        sDefault$      Default string(omittable).
Return:
        Inputted string.

Description:
Opens a dialog box for inputting a string and returns the string which is input
by the user.

GetOpenFile
GetOpenFile(Filt$, bPath%, bSave%) As String

Parameters:
        Filt$ A filter string which specify the file type.
        bPath% If True, returns full path name.
        bSave$ If True, open "Save As" dialog instead of "Open" dialog.
Return:
        File name
Remarks:
Opens the common dialog box of file open and returns a specified file name.
Returning a file name is only the purpose of this function (Do nothing with it).

Beep
Beep()

Parameters:
        None
Return:
        None

Description:
Beep for attention.

DoEvents
DoEvents()

Parameters:
        None
Return:
        None

Description:
Flushes all the messages that are queued in the Windows' message queue.

Environ
Environ(sEnv$) As String

Parameters:
        sEnv$      Environment string.
Return:
        A string indicated by the environment string.

Description:
Returns a string that is indicated by the environment string.

AppActivate
AppActivate(sTitle$, sClass$) As Integer

Parameters:
        sTitle$ Window title. "" Matches all windows.
        sClass$ Window class name. "" Matches all windows.(omittable)
Return:
        Non 0      Succeeded to activate.

Description:
Activates the application whose window matches the specified window title
and the window class.
"Window title" parameter is not necessarily matched to a whole title string.
For example, if sTitle$ is "Dana", it matches the following window title.

Dana - C:\FILE.TXT

IMECtrl
IMECtrl(nMode%)

Parameters:
Return:
Description:

SendKeys
SendKeys(sKeys$, bWait%)

Parameters:
        sKeys$    Key string
                        % ALT key
                        ^ Ctrl key
                        + Shift key
                        special keys like "Up", "Down" should be inside {}

        For more information about special keys,
        see appendix "Special keys.

        bWait%    If True, wait all key strokes has been processed.
Return:
        None

Description:
Sends key strokes to the active application window.
This function enables you to control the other application using with
AppActivate function.

Example:
        SendKeys("%FO")          'Alt+F("File"menu)->"Open"
        SendKeys("^Tab")    'Ctrl+Tab

ShowCursor
Showcaret(bShow%)

Parameters:
        bShow      True        Enables to show a caret.
                        False      Disables to show a caret.
Return:
        None

Description:
Enables/Disables to show a caret.

Time
Time(sFormat$) As String

Parameters:
        sFormat$        Format string (omittable)

%H        hour(00 - 23)
%I        hour(01 - 12)
%M        minute(00 - 59)
%p        AM/PM
%S        second(00 - 59)
%%        % itself

Return:
        A string represents current time.

Description:
Returns a time string. You can use a format string to get time information in
any form as you like.
For instance, if you describe like Val(Time("%H")), you can get the hour
information as numeric decimal.

Date
Date(sFormat$) As String

Parameters:
        sFormat$        Format string (omittable).

%y        year(00 - 99)
%Y        year(Long)
%m        month(01 - 12)
%b        short month name
%B        long month name
%d        date(01 - 31)
%a        short week name
%A        long week name
%%        % itself

Return:
        A string represents current date.

Description:
Returns a date string.

Wait
Wait(nTime%)

Parameters:
        nTime%    Time for wait.(ms)
Return:
        None

Description:
Halts for a specified period of time.

Execute
Run
Shell

Run
Run(sScript$)

Parameters:
        sScript$        Script name. ".DAS" extention is omittable.
Return:
        None

Description:
Runs another script.

Shell
Shell(sCmdLine$) As Integer

Parameters:
        sCmdLine$      Command line.
Return:
        True        Succeeded to execute.
        False      Failed to execute.

Description:
Executes the other program. You can also use "ShellCmd" function as well,
but in this function, you can specify a document name whose extention is
related to a certain application.

Example:
    Shell("Test.XLS")

Special
LodB
StoB
Alloc
ThrowAway

LodB
LodB(sStr$, nIdx%) As Integer

Parameters:
        sStr$      String.
        nIdx%      Index.
Return:
        ASCII character code.

Description:
Returns a character at the specified index position of the string.
Be careful to use this function because it does not check the validation of the
address pointed by the index.
The first character of the string is pointed by index 0.

StoB
StoB(sStr$, nIdx%, nChar%)

Parameters:
        sStr$      String.
        nIdx%      Index.
        nChar%    ASCII character code.
Return:
        None

Description:
Restores a character at the specified index position of the string.
Be careful to use this function because it does not check the validation of the
address pointed by index.
The first character of the string is pointed by index 0.

IsKanji
IsKanji(nChar%) As Integer

Parameters:
Return:
Description:

Alloc
Alloc(nSize%) As String

Parameters:
        nSize%    Size to allocate.
Return:
        String type variable that is allocated by specified size.

Description:
Allocates space for a string variable. You don't have to use this function
usually.

ThrowAway
ThrowAway(sMem$)

Parameters:
        sMem$      String variable
Return:
        None

Description:
Releases a buffer which is allocated for a string variable. You don't have to
use this function usually.

Others
GetMarkFile
GotoNext
Silent
NoSilent
Refresh

GetMarkFile
GetMarkFile() As String

Parameters:
        None
Return:
        Mark file name.

Description:
Returns the mark file name for the current work file.

GotoNext
GotoNext(nMode%) As Integer

Parameters:
        nMode%    Moving mode
                        0      Go to the next document. (as default)
                        1      Go to the next window that has same document.
Return:
        True        Moved successfully.
        False      Failed to move.

Description:
De-activate the current window and activate another window.

Silent
Silent()

Parameters:
        None
Return:
        None

Description:
Stops drawing window.

NoSilent
NoSilent()

Parameters:
        None
Return:
        None

Description:   
Restarts drawing window. You have to call Refresh() function to redraw all of
the windows that belong to Dana.

Refresh
Refresh()

Parameters:
        None
Return:
        None

Description:
Refreshes all the windows that belong to Dana. You have to call this function
after you change some property related to the appearance of Dana.   
Otherwise Dana may not display itself properly.

Properties

Property is the system variable of Dana which can be accessed in Dana
Script.
The name of property always begins with "."(period).
If you see "W" after explanation in the following descriptions, it means the
property is changeable. And "R" means it is better to call Refresh() function
after you change the property. "S" means it is a String type property. "L"
means it is effective for the current edit window only.

If you change "R" marked property and don't call Refresh() function, it will be
called automatically when you are exitting the current procedure. If you think
this timing is OK, you don't have to call Refresh() function each time.

Mode switch
Appearance
Global control
Colors
File and Directory
Editting
Others

Mode switch

.AddEOF Add EOF code at the end of a file on saving. W

.AfterCsr Permit the cursor to locate beyond the end of a line. W

.AutoInd Auto indent mode works. W

.AutoSplit Word wrap mode works. W

.BoxCsr Display a DOS like box type caret. W

.CallFiler Bring up "File Explorer" as "Open" command. W

.CMode C language mode works. W

.DelSpace Delete whitespace after EOL on saving, W

.FillTab In free caret mode, pad tabs from EOL to the caret. W

.FindSel Select found string. W

.FreeCsr Free caret mode W

.Insert Insert mode W

.JumpMid Fix caret at the middle of the screen after jumping. W

.Mirror Mirroring save is effective. W

.PhysLine Display of line numbers is as shown.(not logical) W

.SaveMark Save mark information. W

.ShiftSel Shift key and direction key is used to select strings. W

.SoftTab Input whitespaces instead of a tab code.

WL
.UndoReset Clear current undo buffers after the file is saved. W

Appearance

.CrDisp Show return codes

WR
.DispNum Show line numbers.

WR
.EofDisp Show the end of a file.

WR
.HScroll Show a horizontal scroll bar.

WR
.VScroll Show a vertical scroll bar.

WR
.KeyWords Show keywords in specified colors.

WR
.KeyBold Show keywords in bold font.

WR
.Ruler Show ruler

WR
.StatBar Show the status bar

WR
.TabDisp Show tab

WR
.ToolBar1 Show the toolbar 1(File)

WR
.ToolBar2 Show the toolbar 2(Edit)

WR
.ToolBar3 Show the toolbar 3(Find)

WR
.ToolBar4 Show the toolbar 4(Tool)

WR
.ToolBar5 Show the toolbar 5(Window/Help)

WR
.UnderLine Show an underline on the caret position.

WR
.LineSpace Number of dots between each line.

WR
.BigButton Show buttons of toolbars bigger.

WR
.FkeyDisp Show function keys

WR
.LinePtr Show the line pointer

WR

Global control

.AutoSaveS Seconds to wait for auto backup. W

.DanaState Current event of Dana.(Resident Scriptj               

.DocNum Number of files currently opened.

.hMainWnd Main window handle of Dana.

.ParmA Parameter A.(For Resident Script) W

.ParmB Parameter B. W

.ParmStrA String parameter A. W

.ParmStrB String parameter B. W

.SaveMode Save mode.(0:Normal, 1:Tab->Space, 2:Space->Tab) W

.SprPoint Word wrap point. W

.TextMode Text type for save(0:DOS type,1:UNIX type) W

.TileMode Dual tiling mode(0:Maximized,1:Horizontal,2:Vertical) W

.TrashBin Number of backup generations W

Colors

.BakColor Background color. W

.CrColor Return code. W

.CtlColor Control code. W

.EofColor EOF mark. W

.LinColor Line number. W

.MrkColor Marked line. W

.RulColor Ruler. W

.RulBkColor Backgroud of Ruler. W

.TabColor Tab code. W

.TxtColor Text. W

.UlnColor Underscore. W

.ChgColor Changing mark. W

File and Directory

.BackPath Backup directory. S

.HomePath Home directory of Dana. S

.MirrPath Mirroring directory. S

.ModPath Full path name of Dana.EXE S

.FileName File name of the current work file. LS

.FileTitle Window title of the current work window. LS

.FileType Extention of the current work file. LS

.PathName Full path name of the current work file. LS

Editting

.BlkBeg Line number of beginning of the selection. L

.BlkBegC Column of beginning of the selection. L

.BlkBegL Logical line number of beginning of the selection. L

.BlkEnd Line number of end of the selection. L

.BlkEndC Column of beginning of the selection L

.BlkEndL Logical line number of end of the selection. L

.BlkDisp Selected string is present. L

.BlkSel Now Selecting. L

.Cols Column folding position.

WL
.Column Current column. L
.CsrX Current caret X position. L
.CsrY Current caret Y position. L
.hWnd Window handle of current work window. L
.LineNo Current line number as shown. L
.LineNoL Current logical line number. L
.ReadOnly Read only flag.

WL
.Shift Horizontally shifted columns L
.Tabs Tab columns

WL
.TotLine Total lines of the current work file. L

Others

.FindOpt Find option string.

WS
.ReplOpt Replace option string.

WS
.GrepOpt Grep option string.

WS

Appendix

Tips
Dana Commands
Special keys
Virtual Key Codes
Other Constants

Tips
1)
Dana Script doesn't support "call by reference" and "Type" structure.
But, if you refer the array variable without index, you can get an address of
that.
It is only useful as a parameter for certain DLL functions. Because Dana
Script has no method to refer a certain address.
For example, it passes the address of the structure consquently.

    Declare Proc GetWindowRect Lib "User32" (hWnd%, lpRect%)

    Main()
            Dim Rect(4)
            Dim rct$

            GetWindowRect(hMainWnd, Rect)
            rct$ = "Left,Top of window is " + Str$(Rect(1)) + "," + Str$(Rect(2))
            rct$ = rct$ + Chr$(13) + Chr$(10)
            rct$ = rct$ + "Right,Bottom of window is " + Str$(Rect(3)) + "," + Str$
(Rect(4))
            MsgBox(rct$, "", 0)
    End Proc

2)
Dana Script quite looks an BASIC interpleter, but actually it compiles source
codes into binary codes for the virtual stack machine of Dana. Therefore
every local variables and parameters are on the stack. It means you can
apply C like algorithm, like Recursive call, on it.(Maybe... I've never tried
that.<g>)

Dana Commands
The following command names can be used as a parameter of Command()
function.

Cursor movement
Line Edit
Edit
Scroll
File
Macro
Jump
Find
Tool
Window
Others

Cursor movement
CsrUp
CsrLeft
CsrRight
CsrDown
WordLeft
WordRight
BegLine
EndLine
LeftSide
RightSide

Line Edit
BackSpace
DeleteChar
InputCtrl
InsertTab
ChangeCase
ChgCaseOne
DeleteAfter
DeleteTop
WordBS
WordDel
RepeatOne
WordPaste
TimeStamp
SplitLine
DeleteLine
InsertAft
InsertBef
DupLine
MarkLine
PopLine

Edit
SelectBegin
BoxBegin
BoxPaste
EditPaste
EditCopy
EditCut
Undo
Redo
Repeat
StepDo
EditConvert
EditCenter
EditLeft
EditRight
EditSort
Indent
BackInd
AddString
SelectAll
CopyToFile
PasteFromFile
AppendFile
FlushBuf
SelectClipBd

Scroll
RollUp
RollDown
NormalRlUp
NormalRlDn
SRollUp
SRollDown
AnothRollUp
AnothRollDown
BothRollUp
BothRollDown
PageUp
PageDown
HalfPageUp
HalfPageDown
RollLeft
RollRight
SlowRlup
SlowRldn

File
NewFile
OpenFile
SaveFile
SaveAs
CloseFile
SaveClose
AllSave
AllSaveQuit
ReOpen
Print
PrintPreview
BreakEdit
LockEdit
FileSelect
FileExplorer
AppExit
AllUpdate
AutoSave

Macro
RecordKey
PlayKey
JukeBox

Jump
MakeTop
MakeBot
MakeMid
TextTop
TextBot
JumpLine
PrevPos
NextMark
PrevMark
NextChanged
PrevChanged
MarkList
MarkOff
ScreenTop
ScreenBot
TagJump
BackToTag
OtherParen

Find
SearchFwd
SearchBwd
SearchNext
SearchPrev
Replace
ReplAgain
TitleMark
GetWord
Grep

Tool
Compare
Shell
ShellMenu
LoadWorkspace
SaveWorkspace

Window
Split
TileTwo
TileHorz
TileVert
Cascade
NewWindow
NextPane
AnothWin

Others
ModeInsert
ModeAutoSplit
Menu1
Menu2
Menu3
Menu4
Menu5
AppHelp
Help1
Help2
Help3
Help4
Help5
Addin0
Addin1
Addin2
Addin3
Addin4
Addin5
Addin6
Addin7
Addin8
Addin9
AddinA
AddinB
AddinC
AddinD
AddinE
AddinF
SetProperty

Special keys
RBtn        Left button of mouse.
BS
Tab
Enter
ESC
Space
PgUp
PgDn
End
Home
Left
Up
Right
Down
Ins
Del
F1 - F24

Virtual Key Codes
VK_RBUTTON &H02
VK_BACK &H08
VK_TAB &H09
VK_RETURN &H0D
VK_ESCAPE &H1B
VK_NEXT &H22
VK_PRIOR &H21
VK_END &H23
VK_HOME &H24
VK_LEFT &H25
VK_UP &H26
VK_RIGHT &H27
VK_DOWN &H28
VK_INSERT &H2D
VK_DELETE &H2E
VK_F1 &H70
VK_F2 &H71
VK_F3 &H72
VK_F4 &H73
VK_F5 &H74
VK_F6 &H75
VK_F7 &H76
VK_F8 &H77
VK_F9 &H78
VK_F10 &H79
VK_F11 &H7A
VK_F12 &H7B
VK_F13 &H7C
VK_F14 &H7D
VK_F15 &H7E
VK_F16 &H7F
VK_F17 &H80
VK_F18 &H81
VK_F19 &H82
VK_F20 &H83
VK_F21 &H84
VK_F22 &H85
VK_F23 &H86
VK_F24 &H87

Other Constants
Message box style (Sometimes sum of these following values)

MB_OK &H00000000 OK button only
MB_OKCANCEL &H00000001 OK, Cancel
MB_ABORTRETRYIGNORE &H00000002 Abort, Retry, Cancel
MB_YESNOCANCEL &H00000003 Yes, No Cancel
MB_YESNO &H00000004 Yes, No
MB_RETRYCANCEL &H00000005 Retry, Cancel

MB_ICONHAND &H00000010 Hand formed icon.
MB_ICONQUESTION &H00000020 Question mark.
MB_ICONEXCLAMATION &H00000030 Exclamation marks.
MB_ICONASTERISK &H00000040 Asterisks.

MB_DEFBUTTON1 &H00000000 First button is default.
MB_DEFBUTTON2 &H00000100 Second button is default.
MB_DEFBUTTON3 &H00000200 Third button is default.

ƒƒbƒZ[ƒWƒ{ƒbƒNƒX•Ô‚è’l
IDOK 1 OK selected.
IDCANCEL 2 Cancel selected.
IDABORT 3 Abort selected.
IDRETRY 4 Retry selected.
IDYES 6 Yes selected.
IDNO 7 No selected.

